List of Acronyms

ACAP = Alternative Cover Assessment Program
ALCD = Alternative Landfill Cover Demonstration

AOS = apparent opening size

ARAR = applicable or relevant and appropriate requirement

ASTM = American Society for Testing and Materials

BOD = biological oxygen demand

BTEX = benzene, toluene, ethylbenzene, and xylenes

C&DW = construction and demolition waste

CAA = Clean Air Act CCL = compacted clay liner

CERCLA = Comprehensive Environmental Response, Compensation and

Liability Act

CFR = U.S. Code of Federal Regulations

CH = high-plasticity clay (according to USCS)
CL = low-plasticity clay (according to USCS)

COD = chemical oxygen demand CQA = construction quality assurance CQC = construction quality control CSPE = chlorosulfonated polyethylene

CSPE-R = chlorosulfonated polyethylene - reinforced

DOE = U.S. Department of Energy

EG = emissions guidelines

EIA-R = ethylene interpolymer alloy-reinforced EPA = U.S. Environmental Protection Agency

EPS = expanded polystyrene ET = Evapotranspiration

FDEP = Florida Department of Environmental Protection

FDR = frequency domain reflectometry FHWA = Federal Highway Administration

FID = flame ionization detector FOS = filtration opening size

FS = factor of safety

fPP = flexible polypropylene

fPP-R = flexible polypropylene reinforced

GC = geocomposite

GCL = geosynthetic clay liner

GM = geomembrane

GN = geonet

GPR = ground penetrating radar GPS = global positioning system

GT = geotextile

HAP hazardous air pollutants HDPE = high density polyethylene HELP = Hydrologic Evaluation of Landfill Performance

HW = hazardous waste

HSWA = Hazardous and Solid Waste Amendment

ISM = instantaneous surface monitoring ISS = integrated surface sampling

IW = industrial waste

L = Liters

LandGEM = EPA Landfill Gas Generation Model LCRS = leachate collection and removal system

LDLPE = low density linear polyethylene LDR = Land Disposal Restrictions LDS = leak detection system LE = limit equilibrium

LEACHM = Leachate Estimation and Chemistry Model

LLDPE = linear low density polyethylene LMDPE = linear medium density polyethylene

lphd = liter/hectare/day (1 lphd = 9.35 gallon/acre/day (gpad))

MACT = maximum achievable control technology

MCL = maximum contaminant level MSE = mechanically stabilized earth

MSW = municipal solid waste

MSWLF = municipal solid waste landfill NCDC = National Climatic Data Center NCP = National Contingency Plan

NESHAP = National Emission Standards for Hazardous Air Pollutants

NMOC = non-methane organic compound

NPDES = National Pollution Discharge Elimination System

NRC = U.S. Nuclear Regulatory Commission
NRCS = National Resources Conservation Service
NSPS = New Source Performance Standards

OII = Operating Industries, Inc.

OU = operable unit

PCB = polychlorinated biphenyl

PCDD = polychlorinated dibenzo-p-dioxins PCDF = polychlorinated dibenzo-furans

PE = polyethylene

PERM = permanent erosion and revegetation material

PET = potential evapotranspiration

PHGA = peak horizontal ground acceleration PMP = probable maximum precipitation

PPL = priority pollutant list parts per million =ppm polyvinyl chloride PVC = OA = quality assurance quality control OC = Record of Decision ROD

RCRA = Resource Conservation and Recovery Act

RCPS = rigid cellular polystyrene RUSLE = Revised Soil Loss Equation RWEQ = Revised Wind Erosion Equation

SARA = Superfund Amendments and Reauthorization Act

SASW = spectral analysis of surface waves SC = clayey sand (according to USCS) SCS = USDA Soil Conservation Service SDRI = sealed double-ring infiltrometer

SE = southeast

SITE = Superfund Innovative Technology Evaluation

SMCL = secondary maximum contaminant level

SVOC = semivolatile organic compound SVT = solvent vapor transmission

SWRRB = Simulation for Water Resources in Rural Basins

TDR = time domain reflectometry
TDS = total dissolved solids

TERM = temporary erosion and revegetation material

TR-55 = Technical Release 55 (SCS, 1986)

TRM = turf reinforcement mat TSS = total suspended solids TOC = total organic carbon

TOC = total organic compound (in Chapter 5)

UMTRA = Uranium Mill Tailings Remedial Action

UMTRCA = Uranium Mill Tailings Radiation Control Act

USCS = Unified Soil Classification System
USDA = United States Department of Agriculture

USFWS = U.S. Fish and Wildlife Service

USGS = U.S. Geological Survey
USLE = Universal Soil Loss Equation
VFPE = very flexible polyethylene
VLDPE = very low density polyethylene

VOA = volatile organic acid

VOC = volatile organic compound

WES = U.S. Army Corps of Engineers Waterways Experiment Station

WVT = water vapor transmission XPS = extruded polystyrene

List of Variables

A	=	dimensionless parameter (dimensionless)
A	=	area of emitting source (m ²) (in Chapter 5)
A_b	=	area of drainage basin or subbasin per basin or subbasin width (m^2/m)
A_{s}	=	average annual soil loss by sheet and rill erosion (tonnes/ha/yr)
a_a	=	cohesion (for internal strength) or adhesion (for an interface) for the critical potential slip surface above the hydraulic barrier (Pa)
a_{ai}	=	apparent adhesion (for an interface) or cohesion (for internal strength) for the critical potential slip surface (Pa), as defined in Figure 6-8
a_b	=	cohesion (for internal strength) or adhesion (for an interface) for the critical potential slip surface below the hydraulic barrier (Pa)
a_i	=	adhesion (for an interface) or cohesion (for internal strength) for the critical potential slip surface (Pa)
В	=	dimensionless parameter (dimensionless)
В	=	Distance over which differential settlement, Δ , occurs (m)
C	=	vegetative cover and management factor (dimensionless)
C_d	=	empirical factor (dimensionless)
C_{e}	=	void ratio correction factor (dimensionless)
C_{F}	=	vegetal cover factor (dimensionless)
C_{I}	=	vegetal retardance curve index (dimensionless)
C_{r}	=	runoff coefficient (dimensionless)
C_s	=	surface layer coefficient (dimensionless)
CN	=	runoff curve number (dimensionless)
COG	=	combined crop factors (dimensionless)
$C_{\alpha\epsilon}$	=	modified secondary compression index (dimensionless)
$C_{\alpha\epsilon 1}$	=	modified secondary compression index during the intermediate secondary compression period (dimensionless)
$C_{\alpha\epsilon2}$	=	modified secondary compression index during the long-term secondary compression period (dimensionless)
$C_{i,1}$ - $C_{i,2}$	=	concentration gradient of species i (Mg/m ³)
c	=	runoff coefficient (dimensionless)
c_s	=	cohesion of soil material above the critical potential slip surface (Pa)
D	=	flow depth (m)
D_{i}	=	depth of influence (m)
D_{i}	=	diffusivity of species i through cover material (m/yr²) (in Chapter 5)
D_{15}	=	particle size at which 15% by dry weight of the soil particles are smaller (mm)
D_{50}	=	minimum gravel or riprap mean particle size to withstand the peak rate of runoff (mm)
D_{85}	=	particle size at which 85% by dry weight of the soil particles are smaller (mm)

d depth of rainfall in time of concentration from a storm with a certain return period (m) Е equivalency factor (dimensionless) = vertical evaporative flux (mm/day) $E_{\mathbf{v}}$ erodible fraction (dimensionless) EF = ER_{i} mass emission rate of species i (Mg/yr) = evapotranspiration (mm/day) ET flow concentration factor (dimensionless) F = $F_{\mathbf{w}}$ seepage force (N) = factor of safety (dimensionless) FS FS_A factor of safety for critical potential slip surface above the hydraulic barrier (dimensionless) factor of safety for critical potential slip surface below the hydraulic FS_{R} =barrier (dimensionless) minimum acceptable factor of safety (dimensionless) FS_{min} slope function (dimensionless) f(S)seepage force per unit volume (N/m³) f_{w} dynamic shear modulus (Pa) G = dynamic shear modulus reduction factor (dimensionless) G/G_{max} specific gravity of gravel or riprap (dimensionless) G_{s} = maximum small-strain dynamic shear modulus (Pa) G_{max} acceleration of gravity (m/s²) = height of the falling weight (m) Η = elevation difference along flow path (m) H_{f} = soil layer thickness (m) H_{s} = depth of water that can be stored in a soil layer for subsequent $H_{\rm w}$ = removal by plants height of waste at time t_1 (m) H_1 = H_2 height of waste at time t₂ (m) secondary waste settlement (m) ΔH_s = height of slope (m), as defined in Figure 6-4 h relative humidity of the air (dimensionless) = h_a average hydraulic head (m) = have maximum head in drainage layer (m) $h_{\rm m}$ height of slope above the slope grade break (m), as illustrated in h_{ii} Figure 6-6 relative humidity at the soil surface (dimensionless) h_{r} minimum head at which flow into the coarser-grained layer first h_z occurs (m) I infiltration into surface cover soil (mm/day) = hydraulic gradient (dimensionless) rainfall intensity (m/s) = İr soil erodility factor (dimensionless) = K

=

K'

soil roughness factor (dimensionless)

hydraulic conductivity (m/s)

```
methane generation rate constant (yr<sup>-1</sup>) (in Chapter 5)
k
              =
                    cover soil saturated hydraulic conductivity (m/s)
k_{cs}
                    drainage layer hydraulic conductivity (m/s)
k_d
              =
                    granular drainage layer hydraulic conductivity (m/s)
k_{ds} \\
                    long-term field hydraulic conductivity of granular drainage layer
k_f
                    (m/s)
                    gas conductivity (m/s)
k_g
              =
                    pseudo-static seismic coefficient (dimensionless)
k_h
k_1
              =
                    laboratory hydraulic conductivity of granular drainage layer (m/s)
                    cross-plane hydraulic conductivity of geotextile (m/s)
kn
              =
                    saturated hydraulic conductivity (m/s)
k_{\rm s}
                    unsaturated hydraulic conductivity (m/s)
k_{\rm n}
              =
                    pseudo-static seismic coefficient that produces a psuedo-static slope
k_{\rm v}
                    stability FS of 1.0 (dimensionless)
                    yield acceleration (m/s<sup>2</sup>)
k_v g
L
              =
                    lateral drainage (mm/day)
                    length of drainage layer flow path (m)
L_d
              =
                    length of overland flow path (m)
L_{\rm f}
                    thickness of finer-grained soil layer (m)
L_{fg}
              =
                    methane generation potential (m<sup>3</sup>/Mg)
L_0
              =
                    slope length and steepness factor (dimensionless)
LS
              =
                    slope length (m)
1
                    mass of solid waste in the i<sup>th</sup> section (Mg)
M_{i}
                    earthquake moment magnitude (dimensionless)
M_{\rm W}
              =
                    Manning's roughness coefficient for the considered vegetative cover
n
                    (dimensionless)
              =
                    porosity of gravel or riprap layer (dimensionless)
n_p
                    Manning's roughness coefficient for the bare soil (dimensionless)
n_s
                    the 95% opening size of the geotextile (mm)
0_{95}
P_a
                    vapor pressure in the air above the evaporating surface (Pa)
                    conservation support practice factor (dimensionless)
P_{\rm c}
              =
                    precipitation (mm/day)
                    percolation through the cover system (mm/day)
PERC
PERC*
                    percolation through the cover soil (mm/day)
                    potential evapotranspiration (mm/day)
PET
                    mass transport of soil at downwind distance x (kg/m)
O(x)
              =
Q_{M}
              =
                    maximum expected gas generation flow rate (Mg/yr)
                    mass transport of soil (kg/m)
Q<sub>max</sub>
                    maximum mass transport of soil at downwind distance x (kg/m)
Q(x)_{max}
              =
                    peak rate of runoff (m^3/s/m)
              =
Q
              =
                    flow capacity of drainage layer (m<sup>3</sup>/s/m)
q_c
                    maximum flow rate in drainage layer (m^3/s/m)
q_{\rm m}
                    runoff (mm/day)
R
              =
                    rainfall energy/erosivity factor (dimensionless)
R_e
              =
R_{\rm f}
                    permissible velocity reduction factor (dimensionless)
              =
```

 R_n

net radiant energy available at the surface (mm/day)

S slope inclination (dimensionless) S(z,t)Sink term representing uptake by transpiration (s⁻¹) soil crust factor (dimensionless) SCF =retention parameter (mm/day) S_{r} = field length scale (m) s(x)geosynthetic tension above the potential slip surface (N/m) Τ = thickness of material above the critical potential slip surface (m) (in = Chapter 6) t time (s) (in Chapter 4) thickness of soil layer at point A (m), as defined in Figure 6-5 = average thickness of soil layer between points A and B, which are t_{avg} defined in Figure 6-5 (m) = thickness of soil layer at point B (m), as defined in Figure 6-5 $t_{\rm b}$ time of concentration (s) $t_{\rm c}$ = drainage layer thickness (m) = $t_{\rm d}$ granular drainage layer thickness (m) = t_{ds} age of the ith section (vr) = ti required thickness of the internal drainage layer (m) = $t_{\rm m}$ thickness of water flow parallel to the slope (m), as defined in Figure = t_{w} 6-3 t*w thickness of water in Wedge 1 (m), as defined in Figure 6-4; = starting time for the period of secondary compression (s) t_1 t₁ plus the time duration of secondary compression or intermediate t_2 secondary compression (s) T_2 plus the time duration of long-term secondary compression (s) = t_3 wind speed (km/hr) U_a flow velocity (m/s) v shear wave velocity of material (m/s) = Vς shear wave velocity of waste (m/s) V_{s. waste} mass of the falling weight (tonne) buoyant unit weight (N) W_b weather factor (kg/m) WF = = downwind distance (m) cover thickness (m) (in Chapter 5) = X = critical distance along a slope before gully formation begins (m) X_c = vertical coordinate (m) \mathbf{Z} Γ slope of the saturation vapor pressure versus temperature curve at the = mean temperature of the air (dimensionless) Ψ = geotextile permittivity (s-1) matric potential (negative) due to capillary suction forces (N/m2) Ψ =empirical constant (m/tonne)^{0.5} α slope angle (degrees) β = average buoyant unit weight of material above the critical potential = γ_b slip surface (N/m³) average saturated unit weight of material above the critical potential γ_{sat} slip surface (N/m³)

```
total unit weight of material above the critical potential slip surface
\gamma_t
                       or total unit weight of material (N/m<sup>3</sup>)
                       total unit weight of waste (N/m<sup>3</sup>)
                =
Yt, waste
                      unit weight of water (N/m<sup>3</sup>)
\gamma_{\rm w}
                       differential settlement (m)
\Delta W_{foliage}
                       change in water storage on plant foliage (mm/day)
                       change in water storage in cover system soil (mm/day)
\Delta W_{soil}
                       change in water storage at surface (mm/day)
                =
\Delta W_{surface}
                       shear displacement (m)
                =
δ
                       soil volumetric moisture content (dimensionless)
θ
                =
                       air transmissivity (m<sup>3</sup>/s/m)
\theta_{a}
                =
                       soil apparent field capacity (dimensionless)
\theta_{afc}
                       allowable hydraulic transmissivity of geosynthetic drainage layer
\theta_{\rm allow}
                       (m^3/s/m)
                       geosynthetic drainage layer transmissivity (m<sup>3</sup>/s/m)
                =
\theta_{dg}
                      granular drainage layer transmissivity (m<sup>3</sup>/s/m)
                =
\theta_{ds}
                       soil field capacity (dimensionless)
\theta_{\rm fc}
                      hydraulic transmissivity (m<sup>3</sup>/s/m)
                =
\theta_{\mathsf{h}}
                       soil water storage capacity (dimensionless)
                =
\theta_{\rm sc}
                       ultimate hydraulic transmissivity of geosynthetic drainage layer
                =
\theta_{\rm ult}
                       (m^3/s/m)
                       soil wilting point (dimensionless)
\theta_{wp}
                =
                       pore size distribution index (dimensionless)
                       air viscosity (kg/m/s)
\mu_a
                       water viscosity (kg/m/s)
                =
\mu_{\rm w}
                       air density (kg/m<sup>3</sup>)
                =
\rho_a
                       water density (kg/m<sup>3</sup>)
\rho_{\rm w}
                      normal stress (kPa)
                =
\sigma_n
                       shear stress (Pa)
                =
τ
                =
                       allowable shear stress (kPa)
\tau_{\mathbf{a}}
                =
                       allowable shear stress for the surface layer with bare soil (kPa)
\tau_{ab}
                       allowable shear stress for the Horton/NRC method (kPa)
                =
\tau_{ah}
                       effective shear stress applied to the surface layer by the flowing
               =
\tau_{\mathbf{e}}
                       water (kPa)
                       psychrometric constant (dimensionless)
                =
ν
                       angle of repose or gravel or riprap (degrees)
φ
                       angle of internal or interface friction for the critical potential slip
                =
                       surface (degrees)
                       angle of internal or interface friction for the critical potential slip
φa
                       surface above the hydraulic barrier (degrees)
                       angle of internal or interface friction for the critical potential slip
                =
фь
                       surface below the hydraulic barrier (degrees)
                       angle of internal friction for the soil material (i.e., protection layer
\pmb{\varphi}_s
               =
                       and/or granular drainage layer) above the critical potential slip
                       surface (degrees)
```

- secant angle of internal or interface friction for the critical potential $\varphi_{si} \\$ slip surface (degrees), as defined in Figure 6-8 tangent angle of internal or interface friction for the critical potential
- φ_{ti} slip surface (degrees), as defined in Figure 6-8